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Abstract 

This research investigates sessile drop interfacial reactions between two refractory materials 

(high-chromia and alumina) and two synthetic slags (coal and petcoke). Pulverized slag 

samples were placed at specific microstructure locations on refractory substrates and heated 

to 1500 ºC at log(Po2) = -9, using a high-speed heating chamber. Cross-sections of the 

slag/refractory interface indicated unique slag penetration into preferred areas of the 

refractory and grain dissolution into the slag through a de-bonding mechanism. Initially, the 

slag attacked both grain boundaries and fine microstructure areas, freeing alumina grains into 

the slag. Crystalline VOx formation in the petcoke slag was found to alter the overall liquid 

composition. Chemical spallation of Cr-containing crystal layer facilitated degradation of the 

refractory. 

Introduction 

Coal gasifiers are commercially utilized to produce syngas (CO and H2) from various carbon 

feedstock, water, and oxygen. The syngas is then converted to chemicals and electric power. 

Feedstock materials such as coal, petroleum coke (petcoke), natural gas, or biomass contain 

numerous minerals and a mixture of ash constituents that may completely or partially liquefy 

under the gasification conditions (T = 1300 to 1600 
o
C, P = 2.75 MPa and log(PO2) = -9 to -7 

[1]). The liquefied ash forms a slag layer that causes degradation of refractory walls. The 

slag-refractory interactions occur by a combination of chemical dissolution, mechanical 

erosion, peeling wear, periodical oxidation-reduction reactions, chemistry variation of 

feedstock, etc. [1]. The mineral impurities impart different chemical and physical properties 

to the slag and can interact differently with the refractory liner. Superior corrosion resistance 

of high chromia containing refractory over pure alumina has been reported [1, 2, 3]. By cup-

type experiments, Rawers et al. [2] found the spinel (Al, Cr, Fe)3O4 phase on the refractory 

side of the coal slag/high chromia refractory interface in addition to dissolution of Cr into the 

coal slag.  

 

Thermodynamically stable phases can be predicted from computational aids as shown in 

Figure 1 (FactSage [4, 5]). At the present experimental temperature (1500 ºC), both slags are 

completely liquid and no solid is expected to form at equilibrium. Crystalline phases, 

therefore, only form by interfacial reactions with the refractory materials, diffusion, or 
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supersaturation. In Figure 1, each homogeneity region is separated by thin dotted lines. For 

coal slag, there is a small amount of mullite (2SiO2·3Al2O3) coexisting with molten slag at 

1300 ºC, however this amount decreases with higher temperatures. The coal slag becomes 

completely liquid above 1450 ºC. Note that the computation for petcoke slag was done 

without VOx and KOx since no interaction data were available in FactSage.  

 

Although a description of the VOx interaction with slag has not yet been optimized in the 

current databases of major thermodynamic software packages like FactSage or Thermo-Calc 

[6], the oxidation state of this transition metal can be predicted from the stability diagram in 

Figure 2 (FactSage) under the assumption that molten slag does not modify the VOx stability 

under the gasification conditions and that the formation kinetics is relatively fast. According 

to Figure 2, V2O3 is likely stable with the molten slag in normal gasification conditions as the 

melting temperature of V2O3 is higher (> 1890 ºC [7]). A thermodynamic assessment of the 

V2O3 interaction with slag liquid is underway. 

 

This study focuses on the interfacial reactions between gasifier slags (coal and petcoke) and 

refractories (90wt.%Cr2O3-10wt.%Al2O3 and pure Al2O3) on a short-term and long-term basis, 

by utilizing a hot-stage microscope equipped with an infrared image furnace. The interaction 

behaviors of the slags on different refractory locations with different surface energies were 

studied from cross-sectioned samples using Scanning Electron Microscopy (SEM) with X-ray 

Energy Dispersive Spectroscopy (EDS). 

 

 
Figure 1: Fractions of stable phases for each specimen over temperature 
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Figure 2: Vanadium oxide stability over oxygen partial pressure indicating V2O3 is a stable 

phase under gasification conditions 

Experimental 

Two slags studied in this investigation were synthesized. The coal ash slag composition was 

taken from a report of Selvig and Gibson [8]. The chemistry of the petcoke slag was 

determined by averaging and normalizing data provided by Bryers [9] and the National 

Energy Technology Laboratory (NETL) in Albany. The slags were prepared from reagent 

grade oxide powder mixtures heated above the melting temperature in high purity Ar for two 

hours. The slags were premelted again under CO/CO2 (= 1.8) atmosphere at 1500 ºC for 20 

minutes to minimize potential reducing reactions during the experiment. The CO/CO2 gas 

mixture provides approximately log(Po2) = -9 at 1500 ºC. The resultant compositions were 

tested by ICP spectrometry (Table I). 

Table I. Chemistry of the Slags Studied 

 Petcoke slag (wt.%) Coal ash slag (wt.%) 

SiO2 25 52 

Al2O3 7.8 24 

CaO 10.1 6.4 

Fe2O3 10.2 14.5 

K2O 1.2 2.9 

V2O5 46 - 

Total 100.3 99.8 

 

Refractory samples used in this study were sinter-bonded refractories of 90wt.%Cr2O3-

10wt.%Al2O3 (99.2%) and Al2O3 (99.6%). There are generally two structurally distinct 

regions: grain aggregated parts (up to 3 mm) and matrix regions where fine refractory 

particles are compacted with bond materials. The porous matrix areas likely lead to chemical 

dissolution, mechanical erosion and slag penetration due to a large surface area and porosity 

network throughout the refractory. It should be noted that there are networking pores and 

microcracks across the grain aggregate as well, though not as extensive as in the matrix areas. 

SEM micrographs of the refractory surfaces are shown in Figure 3.  
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Figure 3: Refractory surfaces of alumina (left) and high-chromia (right) showing two 

microstructures: fine regions (solid circles) and grain agglomerate (dotted circles)  

Slag-refractory interactions were investigated by sessile drop type experiments and 

elementary analyses over different spatial locations with various grain/particle sizes. A sessile 

drop (300 to 500 µm) of each slag was placed separately on two different microstructures of a 

refractory plate (~1 mm thick, 1 µm surface-finish), and heated at 1500 ºC for 0 minutes and 

10 minutes under the 64%CO-36%CO2 atmosphere. The IR heating chamber of a Confocal 

Scanning Laser Microscope (CSLM) achieved a heating rate of 77 ºC/sec (Figure 4). After 

each heat treatment, the sample was He-quenched at an average cooling rate of 99 ºC/sec. 

The reacted sample surfaces and interfaces were analyzed with SEM-EDS. A temperature 

gradient, created by a peculiarity of the experimental setup and a spatial deviation from a 

focal point as the heat source in an ellipsoidal furnace, was estimated by calibration with pure 

Co (Tm = 1495 ºC). The average overall deviation of the actual sample temperature against 

the thermocouple measurement was determined to be +55 ºC, which is taken into account 

throughout this study.   

The investigation was divided into 16 experiments: 2 slags (coal and petcoke) × 2 structurally 

different locations of refractory (grain aggregate and fined particles) × 2 refractories 

(90wt.%Cr2O3-10wt.%Al2O3 and Al2O3) × 2 holding times (no soaking and 10 minutes). 

Note that the holding time here corresponds to a length of heat treatment after the designated 

temperature is reached. Therefore, potential reactions during heating must be also considered.  

 

(1) CSLM hot stage 

 
Figure 4: A schematic of CSLM showing (1) a hot stage and (2) sample setup 

Results and Discussion 

Top-down view SEM images of the slags reacted with distinct microstructures are presented 

in Figure 5 and Figure 6. Coal slag on a grain agglomerate of both refractories remained on a 

surface in a semispherical cap after 10 minutes of heat treatments. Penetration into the 

refractory was observed through the grain regions but the penetration was much smaller than 

through the fine regions. Al2O3 particulates (10–30 µm) from the fine matrix of the alumina 
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refractory were taken up into the coal slag and were washed out on the surface after the 

remaining slag liquid penetrated into the substrate, whereas the coal slag almost completely 

penetrated when interacted with the high-chromia refractory. VOx-based particles formed 

from the petcoke slag on the refractory surface, altering the remaining liquid chemistry. From 

EDS results, the V concentration in such a liquid was 15% of that in the original slag (in 

at.%) from the petcoke sample placed on the high-chromia. No V was detected from the 

petcoke slag trapped in a pore 500 µm down the high-chromia refractory.  

 

EDS elementary maps for Cr and Si in Figure 7 represent high-chromia refractory substrate 

and coal slag, respectively. Pore network and fine regions are strongly favored by the slag 

attack. Penetration through the pores occurred instantly and was more widely expanded 

underneath the surface compared to the spreading area over the surface.  

 

 
Figure 5: SEM images of slags on high-chromia (10 minutes at 1500 ºC) 

 

 

 
Figure 6: SEM images of slags on alumina (10 minutes at 1500 ºC) 
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Figure 7: EDS elemental maps revealing pore network (left) and coal slag penetration (right) 

in high-chromia refractory 

 

Another area vulnerable to refractory degradation was grain boundaries. Figure 8 shows that 

petcoke slag revealed the grain boundaries of the alumina refractory as it spread over the 

grain aggregate surface. Although grain agglomerates are relatively more resistant against 

mechanical erosion and chemical dissolution, alumina grains can still be picked up by severe 

slag attack targeting the grain boundaries. Fine regions were more susceptible than the grain 

agglomerates. Slag liquid was promptly sucked into the pores and gaps through the matrix 

immediately after the slag contacted the refractory. Dissolution of the fine particles enriches 

the slag liquid and at the same time, larger grains can be carried away into the slag. Figure 9 

shows that extensive slag penetration loosened alumina grains on the refractory surface. In 

practice, continuous slag arrival keeps replenishing the refractory surface and the loosened 

particles as in Figure 9 can be continuously carried away. 

 

 
Figure 8: Grain boundaries were revealed as petcoke slag spread over a grain agglomerate of 

alumina at 1500 ºC (after 5min) 
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Figure 9: Coal slag penetration into fine regions loosening alumina particulates (0min) 

 

The major constituent of the petcoke slag is vanadium oxide (VOx). Vanadium is a transition 

metal with various oxidation states [10, 11, 12]. When the petcoke slag contacts the high-

chromia substrate, the fast VOx-Cr2O3 interaction causes the immediate formation of the (Cr, 

Fe, V)Ox crystalline layer at the slag/refractory interface (Figure 10). The (Cr, Fe, V)Ox phase 

grows into the molten slag, which then breaks off and drifts away, although the layer 

remained continuous during 10 minute-soaking at 1500 ºC. As a result, the majority of V 

stays above/near the surface. V was also found at the bottom of the refractory in most of the 

cases, which implies early penetration of V-species occurred along with the slag liquid before 

the formation of VOx. Fine V-rich spherical particles were also found in the petcoke slag, 

which probably resulted from supersaturation with Cr2O3 and/or Al2O3 by refractory 

dissolution.  

 

 
Figure 10: Cross-sectional SEM image (left) and corresponding EDS map (right) showing 

chemical spallation of (Cr,V)2O3 from high-chromia refractory 

Conclusion 

Weak links of refractory against slag attack are fine regions, pore networks and grain 

boundaries. Alumina particulates were eroded away by slag surrounding them through grain 

boundaries, pores and microdefects. Chemical spallation of VOx-based phase also played a 

role as product layers at the interface were detached from the high-chromia refractory surface 

into the slag. The resultant slag liquid after the formation of VOx was appreciably depleted in 

V compared to the original slag composition. 
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